Entering Data:
Data can be entered into the Data Editor, which may be useful for small data files or for making minor edits to larger data files.

Click the “Variable View” tab

You need to define the variables that will be used. New variables are automatically given a Numeric Data type. If you don’t enter variable names, unique names are automatically created. However, these names are not descriptive and are not recommended for large data files.

The names that you entered in Variable view are now the headings for the first three columns in “Data View”.
While in “Data View” you can enter data starting at the first column.

To hide the decimal points, even though their values are intended to be integers, click “Variable View” tab, in the “Decimals” column, type “0” to hide the decimal.

Non-numeric data, such as strings of text, can also be entered into the Data Editor. Under the “Variable View” tab, under Type, click the button on the right side of the Type cell to open the Variable Type dialog box.

The Type column displays the current data type for each variable. The most common data types are numeric and string, but many other formats are supported.
In addition to defining data types, you can also define descriptive variable labels and value labels for variable names and data values. These descriptive labels are used in statistical reports and charts. Labels are meant to provide descriptions of variables. These descriptions are often longer versions of variable names. Labels can be up to 255 bytes. These labels are used in your output to identify the different variables.

Value labels provide a method for mapping your variable values to a string label. For example, 0 can mean “No”, and 1 can mean “Yes”.

The “Value” is the actual numeric value. The “Value Label” is the string label that is applied to the specified numeric value. Please note that string values are case-sensitive, you should be consistent. A lowercase m is not the same as an uppercase M. These labels can also be displayed in Data View, which can make your data more readable.
By default the actual data values are displayed. To display labels, either go to the View, Value Labels or click

![Image of SPSS data editor](image1)

If you put your mouse cursor in a variable name, a more descriptive variable label is displayed:

![Image of variable labels](image2)

Descriptive value labels are now displayed to make it easier to interpret the responses.

Missing or invalid data are generally too common to ignore. Survey respondents may refuse to answer certain questions, may not know the answer, or may answer in an unexpected format. If you don’t filter or identify these data, your analysis may not provide accurate results. For numeric data, empty data fields or fields containing invalid entries are converted to system-missing, which is identifiable by a single period. The reason a value is missing may be important to your analysis. For example, you may find it useful to distinguish between those respondents who refused to answer a question and those respondents who didn’t answer a question because it was not applicable.

Click in the “Missing” column, then click on the button on the ride side of the cell

![Image of missing values](image3)

In this dialog box, you can specify up to three distinct missing values, or you can specify a range of values plus one additional discrete value.
Beginning SPSS

So for example say “999” corresponds to a missing value. You will select “Discrete missing values” and put “999” in the text box. Then you will have to label the missing value. So under the “Values” column open up the “Value Labels” [...], under “Value” you would put “999” under Label you would put “No Response” then click “Add”.

Missing values for string variables are handled similarly to the missing values for numeric variables. However, unlike numeric variables, empty fields in string variables are not designated as system-missing. Rather, they are interpreted as an empty string. So for example like in the example above you will open the Missing Values dialog box, but for the string value, and under “Discrete missing values”, you will put “NR”. Then you will have to add “NR” in your value labels.

The Analyze menu contains a list of general reporting and statistical analysis categories. If a category is followed by an arrow, this indicates that there are several analysis procedures available within the category.

If we choose, Analyze-Descriptive Statistics-Frequencies

An icon next to each variable provides information about data type and level of measurement. In the dialog box, you choose the variable that you want to analyze from the source list on the left, and move them into the Variable list on the right.

You can obtain additional labeling information by right clicking any variable name in the list:
Under Value labels, all the defined value labels for the variable are displayed.

In the dialog box, you choose the variable that you want to analyze from the source list on the left, and move them into the Variable list on the right.

Click ok
Results are displayed in the viewer window. You can quickly go to any item in the viewer by selecting it in the outline pane.

Although some statistical procedures can create high-resolution charts, you can also use the Graphics menu to create charts.

In this example we’ll create a Bar, Clustered Bar graph. So we drag this icon into the “Chart preview uses example data”. Then we scroll in our variables list chose the variable we want charted. Right click on the variable and click “Nominal” in both variables. Then drag the variables in the “x-Axis” and the “Cluster”, and click ok.
Beginning SPSS